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BALLISTIC RESEARCH LABORATORIES REPORT NO. 731 

Bennett/emj 
Aberdeen Proving Ground, Md. 
5 September 1950 

OPTBOTA SOURCE SIZE FOR THE MACH-ZEI-WDER IIITERFEROMEl-ER 

ABSTRACT 

A vector analytic treatment is given of the formation of 
undisturbed fringes by an ideal Mach-Zehnder interferometer with 
an extended source»  The path difference of two interfering rays 
at an arbitrary point in the field is found to depend in a simple 
way upon the source point from which the rays originate, the field 
point examined, and a dyadic which is a function of the unit nor- 
mals to the last mirror and divider plate of the interferometer. 
The fringe clarity condition that all pairs of interfering rays 
reaching the field point have path differences within a specified 
range is developed in the form of an inequality. Analysis of this 
fundamental inequality shows that all admissible area sources must 
be areas enclosed between two conies in the source plane.  For 
fringes perpendicular to the plane of centers of the interferometer 
elements, the optimiun source is a circle with radius inversely pro- 
portional to the square root of the number of clear fringes desired. 
This result holds for all interferometers of parellelogram plan- 
foniio  For fringes parallel to the plane of centers, each inter- 
ferometer orientation presents a special case. The  optimum source 
area is obtained for two of these,, viz,, the 45° and 30° interferometers. 



1. INTRODUCTION 

In recent years much attention has been deroted to the Maoh- 
Zehnder interferometer as an instr\iment suitable for the explora- 
tion of supersonic flows. A paper by J. Wlt^cler'^ reports the 
application of this instrument to the study of an axially symmetric 
supersonic jet of air, and, in describing the theory of the inter- 
ferometer^ the author remarks (p. 309), "The complete theory of the 
formation of inteference fringes from a large^ extended source by 
the Mach interferometer has not been given so faro" At about the 
same time, a Naval Ordnance Laboratory report by Ernst Winjtkler 
appeared in which a thorough study of the Mach-Zehnder interfer- 
ometer was made, employing synthetic geometrical methods and many 
geometrical figures and diagrams. "While E. Winkler's work gives 
a partial ansv/er to the question of optimum source size, his syn- 
thetic technique is complicated and hard to follow requiring con- 
siderable effort on the part of the reader in visualizing the 
conditions described. 

In this paper, a vector analytic treatment of the ideal Mach- 
Zehnder interferometer will be given.  The problem of optimum source 
size and shape will be seen to be completely solvable for a large 
class of interferometers; furthermore^ the general results will be 
obtained in concise, mnemonic form. 

2. GENERAL VECTOR EQUATIONS 

Several results from vector analytic geometry will be col- 
lected here for convenience« 

In three-space, the equation of a plane with unit normal n 
passing through point x is "" 

(x - x^) • n = 0„ (1) 

Jo Windier,  "The Mach Interferometer Applied to Studying 
an Axially Symmetric Supersonic Air Jet," ReVo Sci. Inst», 19, 
307, (1948). ■ — 

2 
E.  H. Winkler,     "Analytical  Studies  of the Mach-Zehnder 

Interferometer," N» 0<, L.  Report No„  1077  (5 December 1947). 
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Ihe equation for_a line passing through point x    in the direction of 
the unit -vector r is -£. 

X - X   = sr (2) 
P ' 

Tshere  s is the magnitude of the distance from x    to Xo     The perpendic- — p        — 

ular distance from the point x    to the plane  (1)   is found by replacing 

r_ in  (2)  by the normal n and requiring that jc be the point of inter- 
section of the line with the planej  thus 

^X   = ^^o - ^p)   " n     • (3) 

To treat the reflection of light from ajplane mirror,, we need to 
obtain the unit vector of the outgoing ray r. in terms of the unit 

vector of the incoming ray r. . and the normal to the plane n .  "Rie 
-2z±. _ J-° 

laws of reflection are expressed by the equations 

(r„ » n.) = - (r. ,, ° n,) 

and 
r. = ar.T+bn.. , 

—2 These with the requirement that vl  = 1 yield 

r. = r. ^ - 2(r . . • n .) n . (4) 

By exactly similar reasonings,  one could express the normal n » 
- - -A 

in terms of r. and r.^^ assianing these to be knowno 

3. SPECIFICATIOII OF THE  INTERFEROMETER 

We  shall consider only interferometers made of ideal elements. 
The collimating and camera lenses are assumed to be perfect thin 
lenseso    The dividing plates and mirrors are assumed to be perfectly 
plane and of zero thickness., producing no changes other than beam 
division and/or change of direction of the incident light* 

To specify a standard interferometer configuration,  oonsider a 
plane rectangle of sides a,, b in the x,, y plane with its lower left- 
hand corner at the origin and aides parallel to the x and y direc- 
tions.    QSie elements of the interferometer are located as In Figure 1 
with their centers on the corners of the rectangle and lie in vertical 
planes whose traces have slope -lo    Thus, we have a 45° interferometer 
in  standard position with element  (T),  the first divider platep  at 
(o,  a)j   element  @,  a reflecting mirror^  at (b. OQ.?   element  (3)., 
reflecting mirror,   at (o, o) s   and elCTient  @(,  the second divider 
plate,  at (b, ©) ■    The unit normals n.  and n„ coriresponding to 



elements  (T)   and   (S)   lie in the Xj  y plane  at 45    -with the x axis 
and pointing into the first quadrant; while the unit normals' n^, 

n.    are anti-parallel with n, <, n_o    Psirallel light entering the 

interferometer from the collima^ing lens at (oj,  B. + £) proceeds in 
the negative y direction to  (l)   where  it is  divided into  two beams 
which pass through  the  interferometer along opposite  sides of the 
rectangle to be recombined at   (4),   there to exit again  in the nega- 
tive direction. 

If the  source illuminating the interferometer  consists of a 
single point on the y axis at (o,  a + ^ + f), -vAiere f is the focal 
length of the lens, Vhe collimator will form a  single parallel beam 
which may be  characterized by the unit vector r    located at the 

center of the lens and pointing in the negativ~y direction., Diis 
type of source is that commonly employed_in discussing the elemen- 
tary theory of the interferometer.     The r    unit vector has the c 
property of lying at the center of the beam and pointing along its 
axis;   thus,  it is capable_of representing each rajr in the beam; 
furthermore,  planes with r      as normal intersect the beam in sur- 

c 
faces of constant phase. 

If an extended area source in the focal plane of the lens be 
considered^ it is clear that the lens produces a parallel beam 
correspondin£ to each point on the source and characterized by the 
unit vector r_, with origin at the center of the lens,, directed 
along the line joining source point with lens center. A source of 
arbitrary shape is seen to give rise to a bundle of unit vectors 
Tis^ose tips lie on the unit sphere with origin at the center of the 
lens.  In considering the formation of fringes by the interferometer, 
it is helpful to regard this bundle of unit vectors as if it were a 
luminous object replacing the lens and source altogether„ 

The effect of the interferometer is to split each beam arising 
from a single source-point into two coherent beams of parallel 
light, allowing them to traverse equal paths before recombination 
at plate (4)^ 

In terms of the characteristic unit vectors r"., the interfer- 
ometer produces two^ virtual bundles of "unit vecto'rs at a distance 
L = a + b + i' above plate @. With ® at 45°, these virtual 
images exactly overlap and no fringes are formedo If (4) is rotated 
through a small angle €/2  leaving its center fixed, one of the 
virtual images is rotated about the same center on a radius E., 
through the angle (~ o     In general., the bundle of vectors is a'lso 
rotated like a rigid body about line L as the axis of rotation.. 

Since the reflection from (2) fixes the position of the imrotated 
bundle of unit ve_ctorSj, the representative vector denoted by r at the 
lens will become r^ at mirror (2) in conformity with the notation of 



equation (4). As the reflection from (?) fixes iiie position of the 
rotated bundlej, its representative vector will become r.o !Ihe 

result then is two diverging pencils of parallel beams^o^oriented 
that the central beams of eachj characterized by virtual r^ and 

its displaced image r". converge toward the center of pla'?e"(4)„ 

While in practice fringes are rarely obtained by adjustment of 
plate (4) alonej, for the purposes of the analysis it is most con- 
venient to regard all other elements as fixed and rotate (T) . As 
will be seen later,, the ajaalysis of this case can be applied without 
modification to a large class of adjustments involving three ele- 
ments of the interferometer. 

4. DERIVATION OF THE PATH DIFFERENCE d 

3he central problem before us is to examine at an arbitrary 
field point x (with origin now determined at the center of plate (4)), 

the phase of any pair of interfering rays reaching the point.  This 
we may do by recalling that the first divider plate produces two and 
only two beams from each point on the source. Any pair of rays 
from these two beams may combine to cause interference. Rays selected 
from beams belonging to different source points will not interfere 
because of lack of coherence. Since we have already seen that the 
unit vector r at the lens splits into r„ and r^, we have in these 

— 2     4 
vectors the identification of corresponding pairs of coherent beams. 
Rays proceed parallel to these unit vectors in the respective beams; 
we have only to determine the perpendicular distance from point x 

to the initial planes of equal phase, viz., the planes passing "" 
through the origins of the virtual bundles of vectors. The dif- 
ference of these distances is the path difference d which governs 
the phase of the interference of the two rays„   "" 

To find these origins,, we utilize the fact that the virtual 
bund_les of -vectors appear at distance ~L from the center of (4) in 
the r- and r. directions. 

(5) 

thus Xg = - Lrg^       ) 

) 
a:ad x^ = «= Lr^^       ) 

from equation (2). 

Bie perpendicular distance from x to the plane passing through 

Xg with normal r„ is by (3) 

'2 = (^2 ~ ^p) " ^2 



similarly for the plane passing through x. ■wiiii normal r. 

s = (x - X ) " r. 
4  ^ 4   p'   4  . 

Eie path difference 

d = s^ - Sg = (x^ - Xp) o F^ » (I^ « Xp) • Fg 

L (r„, » X'    - r.  • rJ + (r^ - rJ 
(6) 

X 2c   2   4c  "4''  ^2   4^   p 

using equations (5), 

Now from (4) we find by substitution 

F. • r. = F. - • F. , C7) 

■which expresses the invariance of angle between two rays \mder plajie 
reflection.    Using  (7)  to trace back through the elements  of the 
interferometer, we establish that 

^2 • ^20 = ^4 ° ^4c = ^ ° ^c '' ^S> 

thus (6) reduces to 

d = (Fg - F^) » Xp  . (9) 

We see that the path difference expression is independent of 
any lengths characteristic of the inteferometer so long as the 
origins of the virtual unit vectors lie the same distance, -E, 
behind the center of (4) in the r„ and r, directions,   "~~ 

^-^ 2c 4c 

An immediate broadening in two directions of the  class of 
inteferometers  covered by this analysis is now possible.    In the 
first place,  the rectangle may be  sheared in  the y direction into 
a parallelogram with vertical  sides „     !Qie  central""rays formed by 
splitting r    at  (T)   traverse the sides  of the parallelogram pro- 

viding that the normals  of the interferometer elements are adjusted 
to bisect the acute angles into which they point,   retaining n,, n„ 

parallel as before and anti-parallel to n., n    prior to rotatTonTf 

n.  to produce fringes.     Such a sheared interferometer will be denoted 

by the angle between 'rL   and the vertical,   eogoj  a 30° interferometer 

is one in which the traces of the plates in  standard position are 
inclined at 30    to the negative x direction^ n^, n„ thus make 30 
Tfidth the vertical, —   _£ 

Secondly,  the origin may be moved from the center of   (4) to 
any line y = const, between   (2)  and   (4)   (or exterior to this segment 
for that matter)   still preserving the essential conditions which 

10 



lead to equation (9)» One way of doing this is to rotate n^ toward 

the Yertical and translate (z)  vertically so that the centr^ ray 
from (T) is still, incident on the center of (Z)  but rotating its 
normal so that r  is no longer verticalj, then rotation of (?) in 

the appropriatelTIrection will give an intersection of r„    and F^ 
___gci 4o_ 

which defines the new origin., 

__       I'^^is easily shown that given © and ^ the angles through which 
Up and n. are to be rotated and y   ^he vertical distance to the new 

origin measured from the center o? (V),  there always exists a real 
solution to the problem of specifying ex   the toJigle of rotation of n, 
(and tJae vertical translation of (2) wHTch. depends upon   (>^) In.     -~.. 
such a way that equations  (5)  are preserved with an appropriate value 
of the parameter Lo 

5. MALYSIS OF THE PATH DIFFERENCE FORMULA. 

To develop equation  (9)  furtherj,  let ns trace the representa- 
tive (be_am)  vector F through the interferometer using  (4).    Since 
n^ = - n,, we have 

(10) 

(11) 

(12) 

(13) 

(14) 

D is a d-yad or matrix and in (13)  is operated on from the left 
by dotting in r,  fi'om the right by dotting in x .     This remarkably 

simple result    allows us  to esy^ress the path dTfference of inter- 
fering rays from source point F at any field point x.  providing we 

know the unit normals n,,, n. of the interferometer., 

It is  imiaediataly clear from the fom of D that there is no 
contribution to d_ from any component of x    in ihe direction n, x n„f, 

i„e«,,  d is constant along  lines  in the n'T'x'n„ directiono     lEIs 

direction is therefore the direct|on of~cTeaF~fringers formed by the 
interferometero    Vertical fringes    are formed when n„,, n. r'emaln in 

O' 4: 

^2 = r 

and ^3 = F - 2(F ' n 3^ "'s 

^4 = ^5 "   2('?3  ' '^4^ ^4 0 

Substi tuting these equations into (.9) gives 

d = 2r- " D 
"^P 

where 

D = n^^ ■3 "  ^ 5 (S ■3 ' ^^4^ "4 * V 4 

« 
Henceforth the adjective "vertical" designates fr±o,ges perpen- 

dicula:r to the plane of center-s of the interferometer elements while 
"horizontal" designates fringes parallel to this plane» 

11 



the plane of centers while horizontal  fringes occur nvhen n.  is 

rotated in a plane  containing n, and perpendicular to the^lane 
of eenterSo —^ 

The character of the fringes may be seen from the following» 
Fringes are curves of intersection between the plane of observation 
(photographic plate)  and surfaces of constant path difference d» 
For d = const,,  and a given r (source point)   (l_3)  is the equation 
of tFe feonilv of parallel pTianes with normal r  ° D„    As r   ° D is 
a linear function of n-, and n.,  the planes themselves are^perpen" 

dioular to the plane oF n™., W? and thus parallel to the n. x n_ 

direction regardless of r^     For point source r = r    Hie planes 

of constant path difference are very closely parallel to F   and 

the_frin£es will be parallel  straight lines (not necessariTy parallel 
to n.  X n„)o   For a source point off the.axis the corresponding 

famIly~of~planes does not intersect the plate along the same straight 
lines as before..     The separation between the fringes for r      and r 

is  zero at the origin and increases, both_linearly with x and as a 
fxmotion of the angle between r  » D and r    " D;  hence with an extended 

     c      _   __ 
source the composite fringes -wiiile unchanging in the n. x n„ direction 

become progressively flazzier with distance fr'om the origin. 

If the plane of observation contains n x n„ the fringes are of 

_course^ parallel to this direction. Rotation of the plane about 
n. X n„ causes the fringe spacing to pass through a relative mini- 

raum^ ^3 will be seen later from the fringe width equation (22), It 
is reasonable to suppose that the sharpest fringes will occur for 
the narrowest fringe width, i.eo;, at the relative minimum; since 
othervvise the fuzziness caused by an extended source is projected 
onto a TO.der area and contrast of the fringes is reduced, 

D may be further' modified to advantage if we set 

n^ = an„ + bt (15) . 

wher_6 ^ i£ a unit vector' xn. the n, x (n°   x n,)  direct!on»    (Note that 
n„,, n. X n'g.,  t form a right-handed triad) „ 

Since n„ • n. = - cos    ^: /Z and n      = 1, Tire find 

n. = - cos     ^/Z n„ + sin    «'/2 t (16) *4 ^"^"3 

aad 

D = sin  ^/Z      sin   e/2 n^^ + cos  ^/2 (n,T - tn ) + sin   <S'/2 Tt\    (17) 

wliere     C/z    is the angle of rotation of u. to produce fcingesn 

12 



Since no component of x    in the n. x n„ direction has any effect 

on d^ there is no loss in as'simiing henceforth ■that x   lies entirely 

in the plane of n„., jt perpendicular to ri. x n„. Let 

X   = X = X (n, sin  j/^ + t cos   ^ ). 

Substituting (18)  and (17)  into (13) we obtain 

d = 2 X sin ^/2 F " p 

•where 

p* = n„ cos  ( ^ -  £ /Z)  - t sin {ifr - £ /z) 

(18) 

(19) 

(20) 

X is the -vector to the field point under examination in the 
plane normal to n. x n„.    £ is a unit sector in the same plane but 

approximately perpendicular to x,,  as may be sean from 

p" • xsxsjin £/z = 0. (21) 

Now r * p is the cosine of the aiigle £ between F and Fand depends 
upon the source pqint represented by r and upon  the vector p ■which 
is very closely normal to the direction of investigation in the field 
of fringss.,  i.e.j  normal to the photographic plateo    Using (19),,   if 

= A = 

then the fringe width is 

dg- d^ sm ^/2 

■w = 
\ 

(r . p) (xg - x^) 

X 
2 sin £/Z        (r " p) 

(22) 

Some further information regarding the fringe pattern may now 
be obtained^ w takes on its smallest value for a given ^/?.   when 

r*p  =1, ioe.^F and £ are parallel or anti-parallel,, As £ 

lies in the plane of ng and n^^ and F will usually lie close to F,s 

the minimum w mil be attained only when F lies in or near the 

"Hg, n^ plane,, i.e., perpendicular to "n xlT . As"n x'n lies always 

in the plane normal to "rr^,  it will be perpendicular to 7 only when 
also perpendicular to the plane of centers.  This is th'S^^'condition 
for vertical fringes. Other fringe orientations produce relative 
minima larger than that for vertical fringes, e.go^ for n. x n^ 

I _  —I _± 3 
horizontal.,  j r • p | = cos 0 where %  is the angle of the 

interferometer. 

IS 



r 
c 

For vertical fringes with point source r = r   we may hare 

= 1 and (22)   asstimes the familiar standard form 

w   = 
s 
 X_ 
2 sin e /Z =     ^/6    . (23) 

The conjecture made earlier in the paragraph that laterally 
sharpest fringes are associated with minimum, fringe width leads to 
the conclusion that vertical fringes with p  " r    = 1 will be sharpest 

of allo    As £ is normal to the x direction in the photographic plate 
within £ /Z j, we see that the u'sual arrangement where ver-fcioal fringes 
are obserred on a plate normal  to r    is actually very close to the 

best possible and (23)  applies. 

6. FDNDAMMmL  lUEQUALITY 

Equation (22)   shows the dependence of fr-inge width on the posi- 
tion of the  source point represented by r;  thus  an extended area 
source will produce a composite fringe system consisting of an 
infinite  set of overlapping fringe  systemso    All those  source points 
producing patterns with the  sarae  fringe width are  characterized by 
the requirement 

T - cos ^ - const. (24) 

(24) restricts the vectors r to lie on the cone with vertex at the 
center of the 'unit sphere an'd generator making angle 0' with the unit 
vector £.  !Ihe intersection of this cone with the plane of the 
sourcep whose normal is r , gives the source curve Tirfiich produces 

the given fringe widths ~Ihis curve is„ of course., a conic section. 

In order to obtain a clear fringe system we must require either 
that the source consist only of points for which d = const„ and (24) 
follows,, or we must require that d differ by a small preassigned 
quantity from the predetermined constant valuer  Ihe second alterna- 
tive is less restrictive than the first and will lead to area-type 
sources which are practically realizable. Selecting d as the com- 

0 
parison value,, i.e., in effect choosing the path difference for the 
oentral souroe point as the standard^ w© wif'it© 

d "• <a^ I <-■ K'X (25) 

wl'Lore K is a suitably small number depending upon the clarity that 
wo require in the fringe system^ 

We shall call this expression the fundairiental  inequality of the 
Mach-Ze'hnder interferometer»     It is a geiieraliaation~of the form 
used by Eo H,,' lEnld.'er'   in' 'derivation of his  equation  (2),    Rr-om it 

14 



can be deduced the size and shape of an. admissible source for any 
interferometer of the class specified in Section 4 with any desired 
orientation of fringes. 

liVhile d has been selected as the comparison value in (25)j 

sitxiations may arise iwhere some advantage may be obtained by excluding 
the central source point. In such a case,„ a suitable reference 
value of d should be chosen and substituted for d » 

Returning to (19) WB see that for x = 0 d = 0 and we have the 
central fringe cond5.tion for which all 'source points have zero path 
difference. Proceeding in + or - x direction the path difference 
increases linearly as one passes through fringes 0^ +1„ ±25 +3o„.. 
A simplification in (19) occurs if we agree to measure x in units of 
standard fringe width w . Using (23),, the expression for w , (19) 
becomes "^ 

d = N > r • p (26) 

|r • p " r^ . P 1 - f (27) 

wlaere we now londerstand N to be positiveo For most practical situ- 
ations, the actual fringe mdth differs so little from the standard 
w_ that the number N gives accurately the number of fringes on either 

sTde of center for which the fundsLm.ental inequality is satisfied. 
In using (27),, we may specify the number of fringes we desire within 
a given clarity criterion rather than specifying the size of the 
field to be investigated„ 

Inequality (27) is unchanged if we replace r and 7   by their 

negativeso  Die advantages are twofold: l) 0 ii "r^  •  p~ 1., i.e.^, 
0    is an acute angle and representation of p ana r on the unit 
C a-       Q 

sphere is easier to visualize^ 2) 'r\  is now directed along the axis 

toward the source plane whose equatTon relative to the center of the 
sphere is 

(x " fr ) • 7 = 0 . (28) 

The fundamental inequality may novr be written as 

or 

00s Cf   - ==■   ^ cos Cf ^cos ef     +   K    „ (30) 
__ 1 

We  see that the permissible £ vectors lie on the unit sphere 
between the two  cones whose generators make angles 

15 



0 = COS "^  (cos oi   + ~ ) (31) 

with vector p.     In the plane (28),  the permissible  soiorce may occupy 
the area contained befeveen the conies .fo:rmed by the intersections 
of the cones with the plan.eo 

jQie equation of the conic in the source plane is easily found 
if we employ the orthogonal triad of unit vectors 

/0 = 
p X r' 

sin ^Q 

T^ X (p X F^) 

La ^ sxa 

(32) 

and constnxct the vector 

R = fr, + n rj   + Y/> (33) 

■which_satisfies  the equation of the plane  (28)«     Ihe requirement 
that R be a generator of the cone is 

R • p 

IRT 
COS ^    I (34) 

whence using  (32)   (35)   and simplifying we have the standard form 

(35) 

with 

—2 

a b 

1 = 
f sin (2^    cos <S 
 __£_. ■ ^ 

cos <fi '" &in )S 

> 

2 _ f rin'^^^os'^'^ 
«   = 

(oo3*^|2^ ■•  sin'^'Ji!^ )^ 

> 

2 _  f 'sMi 'jp 
.h" = 

cos ^ ~ sin^JZf 

b 2      I cos '^ -.  sin^f^   ! 

cos 
J 

(36) 

xb 



The conic is an ellipse, parabola or hyperbola as the discrimi- 
nant 

^= (cosV -  si,n% )    =    0. (37) 

As K/% is usually small ^ will be close to j2^ , the A = 0 ralue will 

appear when ^    -   77'/4»  This situation arises., as will be seen laterj, c 
when one considers the formation of horizontal fringes in the 45" 
interferometero 

7. VERTICAL FRMGES 

For vertical fringes n^ x n^j the fringe direction, is perpen- 

dicular to the plane of rienters"~o'f the interferometer, n^j T and 

consequently £ all lie_ in the plane of centers»  Since iTTs nearly- 
perpendicular _to the X direction of investigation;, p wi.Tl, be almost 
parallel with r when "x » r^ = Oj, i^eo^, when the normal to the photo- 

graphic plate is "r » More precisely,, F • p" = 1 implies 

(r    -  n„) cos if''-   £/z)  » (7 » t) sin ( ]i^ - ^/2) = 1 

or 
cos ( ]^- £/z  "■ 9) = 1 (38) 

where 6 is the angle of the interferometero Equation (38) is satis- 
fied if ]//'= 9 + ^/2,. in other 'words, if the photographic plate 
is rotated through a positive angle Q +    g /2 from the % direction 

■i'shich lies along the trace of the mirror"(^ ,' The plate is thus 
seen to be parallel to the bisector of the angle between the r.. ^ 

and -r^^ sectors„  This is the condition -siftiich E. H. Wiiikler "Tms 

given foV the plane of sharpest fringes«  In this derivation it 
appears as the plane for which the largest source may be used to 
obtain fringes of a given clarity; for' with r, " p = i the funda- 
mental inequality becomes '" 

1 - f =^r ' p ^1 ^. 1 + J , (39) 

hence the admissible source is contained wi;thin the circle iwhose 
radius is 

/^= t tan ^.^ (40) 

where cos 0j^ = I '~ g- Neglecting K '/^ and higher powers^ this 

relation becomes 
/'=f  /-f~.    . (41) 

which is equi'o-alent to ITinkler's equation (2)„ It should be 
remarked that the argument given in deri'ving (41) is entirely 
independent of the angle of the in,terferometer and thus applies to 
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any in our general class„ That (41) gives the largest permissible 
source is seen from the following heuristic argument? as F " F 

c 
departs from iralue 1 the central cone is no longer degenerate. For 
small deviations., the excluded area near the center increases approxi- 

2  2 _    _ 
mately as f ^  "where <^ is the angle between r^ and p.  In the 
meantime,, '^EHecu'ter areahas remained practically consTantj since, 
although the circle has become an ellipse of area TTabs a and b 
are equal to within infinitesimals of the second order» The  toTal 
avBllable source area is seen to decreaseo Aperture considerations 
restrict the usable source to the vicinity of the origin and so 
exclude the extreme case with ^ = yr/4 where the inner curve in 
the source plane is an ellipse while the outer curve is one branch 
of an hyperbolao Here the "interior" area is clearly infinite,, but 
the usable region near the origin is extremely nar'row and much less 
in area than that of the circles given above,. 

Ihat (41) imposes a very isreak restriction on source size may 
be seen by setting K = l/lO an.d N = 200 fringes >, For a 2" lens 
with f = 8", the diameter of the source is somewiiat larger than 
half an inch„ Practical spark sources used in high-speed inter- 
ferometry have not approached this size to the author's knowledge. 

8o HDiOlZONTAL FEWGES 

It is possible to discuss the formation of fringes of any 
orientation by means of the analysis given above; however, we shall 
mention here only horizontal fringes. This  case, which is repre- 
sentative of arbitrary orientations,, is much more difficult to 
treat because the results depend strongly on the angle of the inter- 
ferometer., e.g.,, whether it is a 45° or 30° interferometer has a 
strong effect on the permissible source. 

As before, xT. x n"^ define,s the fringe direction; and,, as this 

is taken to be horizontal, it is clear that n™ and n, and '^ all 
6 4 — 

lie in the vertical plane,    n. may be rotateiT'ver'tically out of the 

plane of centers through the~angle   £ /g. 

In order to obtain lengthvd.se clear fringes_^ it is necessary 
to orient the photographic plate to include ttie n    x n„ direction, 

i^.e,.,   it jmist be made to include the trace of mirroiTT^ .     Since 
r   makes angle © with n™ in the horizontal plane of centers and p" 

must lie in a vertioal'~plane containing n„,  the ismallest angle 

botvreen r    and p (consequently the largest source)  is obtained when 

n^  " p -"r.    Using (20),   the expression for £.,  as before we obtain 

cos  ( y^"    ^/2) = 1 (42) 
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■whence f = <^/z  and the condition for clearest fringes (as giTen by 
E« H. Winokler) is to rotate the photographic plate aroxmd n x n„ 

ttirough £. /Z  from vertical. In this ease, the plate is normal to 

Even in this favorable case cosCf = F • p" = cos © and unless c c      '^ 
the interferometer_chosen_is one of extreme shear for -which 0 ==   0, 
the angle between r    and p is appreciable. 

In order to obtain an idea how the permissible  source for a 
given interferometer appears.,   it is convenient to obtain approximate 
expressions for the  constants of the conies neglecting terms in 

K A    and highero    7?hile the following equations are general,  for 
horizontal  fringes jZf    = © will hold. 

Since the limiting values of cos jZf are given by the fixndamental 
inequalitys we investigate only those  curves for which 

cos^'jZf =  (cosj2(^^ ±KA)^'     , (43) 

where in this and the following expressions the upper  sign refers to 
the upper limit,  etc     The discriminant   A. in  (37)  becomes 

COS0 
A= cos2Jzf^  (1 + g  -2-)    I 0 (44) 

cos2j^ c 

with g = -^ . 

We find for the center of the  conic (35) 

f/2 tan20 
"yr   ZZ.     .„ .1,  — ■,.,—.1 

g co&sa (45) 
1 + '•' 

~  cos 2Gr~ 

g cosjZf^ 
- f/2 t^2J2f^  (1 + ^^-^ (46) 

g cosjZf^ 
Tflrhen ——«*—^^        <L ^    1„ coy 20 

^c 

^^"^"■^^'^y g cot 2i^ 
(1+ __™^) 

sin0 
a =^ + f/2 tan 20 — -™w£__< _, (47) 

(1 +   __-„_™JL™ ) 
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= + f/2 tssiZ<^ 

+ £ 

g (1 + cos^2jif J 
1  ^                '-' 

/ 1 '■■■ cos 2^^ 

i + 

c 

2 sin'^iZf 

g   GOS, 

1 + -5 iC OS 20 

(48) 

(49) 

and 

f 
i - 

a 

_ _^  ^i 

/   ocsZOi 

COS c 

g COS 0 
+ — 

2sln'^iZ(^, cos2j2f. 

g oosJ2f. 
1 + — ^ 

-  cos20 

g   CO i!f~~ 
1 + 

cos J?/, 

(50) 

(51) 

b 
a 

/| cos2jZf, 

"coilJ^"" 
0 

1 + 
g (l - cosSjZf.J 

~l~co'sja'.^ cos2:;^ (52) 

Usltig these equations  and. ass-uming © =   '^ /A,  a 45° inter- 
ferometer,, we find that the permissible source of K = l/lOj N = 200 
is the area contained betvveen sn ellipse and an hyperbola in the 
so'oroe planeo     Taa c-onstants of these figures are as fcllowsi 

Ellipse;; X = 707f 

a. = ±707f 

t^a~      ^        - 1 D/a -    ~ 
/707 27 

Hypei-bolaji X ■= »707f 

s, = +  707f 

with asymptotes y - + -j;=.i~ X 

Hie result is the extremely narrow, nearly liorisontal,  ribbon area 
imprisoned in  Vhe first an,d fourth quadrants between the conios 
giTi-en above.     'Ihe origin is,  of course,  included in the source. 
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For the 30 interferometer, 0 = TT/S, both conies are ellipses 
with the following constaiits: 

X = n/z f (1 + yr g) 

a =    Jz/Z f(l + 5   fz/z g) 

b/a =     Tz/i (1 +     /3/6 g) 

from which it is clear that with g = 10  as before,, the ellipses 
are not far from circular as b/a - .816„  The width of the source 
on the axis is about o014fo  Ihis compares with, the diameter 
2 Tg f = „063f for the case of Tertical fringes. Aperture limi- 
tations set by plate @ or the camera lens are likely to restrict 
the useful source to less than 0.1 radian in angular width., in which 
case the circular source of o063 radians angular diameter will have 
a clear advantage in usefial area. 

!Qie practical situation of interest with horizontal fringes is^ 
£f course, that for which the photographic plate is_perpendicular to 
r^. Since this plane no longer contains the n^ x n^ direction there 

will be a non-zero component of x in the plane normal to n. x n„ 
P T:      O 

for all points except the origin« Investigating the boundaries of 
a circular field in the photographic plat£ is equivalent to exploring 
an ellipse in the plane perpendicular to n x n o  The p" vector will 

be nearly normal to the arbitrary vector on this ellipse. 

For each p vector (i„e,,, for each x direction in the plane of 
the ellipse) the permissible source will lie between the two conies 
defined by the upper and lower bounds of the fundamental inequality. 
As there will be an infinity of different p vectors^ there will be 
a corresponding infinity of pairs of conic¥o  Ihe permissible source 
is thus the common area bet^Teen all pairs of conies in the infinite 
set.  To determine this area is a complicated calculation ivhich vre 
shall not attempt here„  Suffice it to say that the resulting source 
will be much more restricted than in any of the previous examples, 
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